Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Parkinsonism Relat Disord ; 103: 129-135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36113390

ABSTRACT

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is one of the most specific prodromal symptoms of synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy. The Japan Parkinson's Progression Markers Initiative (J-PPMI) was a prospective cohort study conducted in Japanese patients with iRBD to investigate biomarkers for prodromal synucleinopathies. We carried out an initial assessment of the J-PPMI study to reveal the factors correlated with dopamine transporter single-photon emission computed tomography (DaT) and 123I-meta-iodobenzylguanidine (MIBG) myocardial scintigraphy. METHODS: This cross-sectional study was conducted in 108 patients with iRBD, selected from the J-PPMI study. We divided the patients into four groups based on the MIBG and DaT results. We also recorded the patients' demographics and clinical data. Following PD probability calculation, we examined the biomarkers associated with DaT and MIBG. RESULTS: Ninety-five of the enrolled patients (88%) met the diagnostic criteria for prodromal PD based on the probability score. Only five patients had normal MIBG and DaT. We identified 29 cases with decreased DaT and MIBG, all of whom met the above diagnostic criteria. Both DaT and MIBG were significantly correlated with the Japanese version of the Montreal Cognitive Assessment (MoCA-J) score. CONCLUSION: Both DaT and MIBG are important biomarkers for confirming synucleinopathies and/or staging disease progression. Although 95% of iRBD patients were consistent with the body-first subtype concept, alpha-synuclein pathologies of iRBD might have widespread systemic involvement rather than being confined to the lower brainstem, particularly in patients with reduced MoCA-J scores.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/complications , Dopamine Plasma Membrane Transport Proteins , 3-Iodobenzylguanidine , Japan , alpha-Synuclein , Cross-Sectional Studies , Prospective Studies , Parkinson Disease/complications , Biomarkers
2.
Ann Neurol ; 92(1): 110-121, 2022 07.
Article in English | MEDLINE | ID: mdl-35428994

ABSTRACT

OBJECTIVE: The motor severity in Parkinson disease (PD) is believed to parallel dopaminergic terminal degeneration in the striatum, although the terminal was reported to be virtually absent by 4 years postdiagnosis. Meanwhile, neuromelanin-laden dopamine neuron loss in the substantia nigra (SN) elucidated a variability at early stages and gradual loss with less variability 10 years postdiagnosis. Here, we aimed to clarify the correlation between motor impairments and striatal dopaminergic terminal degeneration and nigral neuromelanin-laden dopamine neuron loss at early to advanced stages of PD. METHODS: Ninety-three PD patients were divided into early and advanced subgroups based on motor symptom duration and whether motor fluctuation was present. Striatal dopaminergic terminal degeneration was evaluated using a presynaptic dopamine transporter tracer, 123 I-ioflupane single photon emission computed tomography (SPECT). Nigral neuromelanin-laden dopamine neuron density was assessed by neuromelanin-sensitive magnetic resonance imaging (NM-MRI). RESULTS: In patients with early stage PD (motor symptoms for ≤8 or 10 years), motor dysfunction during the drug-off state was paralleled by a decline in 123 I-ioflupane uptake in the striatum despite the absence of a correlation with reductions in NM-MRI signals in SN. Meanwhile, in patients with advanced stage PD (motor symptoms for >8 or 10 years and with fluctuation), the degree of motor deficits during the drug-off state was not correlated with 123 I-ioflupane uptake in the striatum, despite its significant negative correlation with NM-MRI signals in SN. INTERPRETATION: We propose striatal dopaminergic terminal loss measured using 123 I-ioflupane SPECT and nigral dopamine neuron loss assessed with NM-MRI as early stage and advanced stage motor impairment biomarkers, respectively. ANN NEUROL 2022;92:110-121.


Subject(s)
Parkinson Disease , Corpus Striatum/metabolism , Dopamine , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/pathology , Humans , Magnetic Resonance Imaging/methods , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/pathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Substantia Nigra/pathology , Tomography, Emission-Computed, Single-Photon/methods
3.
BMJ Open ; 11(6): e051343, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193504

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is one of the most common causes of dementia. Pathogenic variants in the presenilin 1 (PSEN1) gene are the most frequent cause of early-onset AD. Medications for patients with AD bearing PSEN1 mutation (PSEN1-AD) are limited to symptomatic therapies and no established radical treatments are available. Induced pluripotent stem cell (iPSC)-based drug repurposing identified bromocriptine as a therapeutic candidate for PSEN1-AD. In this study, we used an enrichment strategy with iPSCs to select the study population, and we will investigate the safety and efficacy of an orally administered dose of bromocriptine in patients with PSEN1-AD. METHODS AND ANALYSIS: This is a multicentre, randomised, placebo-controlled trial. AD patients with PSEN1 mutations and a Mini Mental State Examination-Japanese score of ≤25 will be randomly assigned, at a 2:1 ratio, to the trial drug or placebo group (≥4 patients in TW-012R and ≥2 patients in placebo). This clinical trial consists of a screening period, double-blind phase (9 months) and extension phase (3 months). The double-blind phase for evaluating the efficacy and safety is composed of the low-dose maintenance period (10 mg/day), high-dose maintenance period (22.5 mg/day) and tapering period of the trial drug. Additionally, there is an open-labelled active drug extension period for evaluating long-term safety. Primary outcomes are safety and efficacy in cognitive and psychological function. Also, exploratory investigations for the efficacy of bromocriptine by neurological scores and biomarkers will be conducted. ETHICS AND DISSEMINATION: The proposed trial is conducted according to the Declaration of Helsinki, and was approved by the Institutional Review Board (K070). The study results are expected to be disseminated at international or national conferences and published in international journals following the peer-review process. TRIAL REGISTRATION NUMBER: jRCT2041200008, NCT04413344.


Subject(s)
Alzheimer Disease , Bromocriptine , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Bromocriptine/adverse effects , Double-Blind Method , Drug Repositioning , Humans , Mutation , Presenilin-1/genetics , Treatment Outcome
4.
Mol Brain ; 14(1): 80, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971917

ABSTRACT

Homozygous mutations in the lysosomal glucocerebrosidase gene, GBA1, cause Gaucher's disease (GD), while heterozygous mutations in GBA1 are a strong risk factor for Parkinson's disease (PD), whose pathological hallmark is intraneuronal α-synuclein (asyn) aggregates. We previously reported that gba1 knockout (KO) medaka exhibited glucosylceramide accumulation and neuronopathic GD phenotypes, including short lifespan, the dopaminergic and noradrenergic neuronal cell loss, microglial activation, and swimming abnormality, with asyn accumulation in the brains. A recent study reported that deletion of GBA2, non-lysosomal glucocerebrosidase, in a non-neuronopathic GD mouse model rescued its phenotypes. In the present study, we generated gba2 KO medaka and examined the effect of Gba2 deletion on the phenotypes of gba1 KO medaka. The Gba2 deletion in gba1 KO medaka resulted in the exacerbation of glucosylceramide accumulation and no improvement in neuronopathic GD pathological changes, asyn accumulation, or swimming abnormalities. Meanwhile, though gba2 KO medaka did not show any apparent phenotypes, biochemical analysis revealed asyn accumulation in the brains. gba2 KO medaka showed a trend towards an increase in sphingolipids in the brains, which is one of the possible causes of asyn accumulation. In conclusion, this study demonstrated that the deletion of Gba2 does not rescue the pathological changes or behavioral abnormalities of gba1 KO medaka, and GBA2 represents a novel factor affecting asyn accumulation in the brains.


Subject(s)
Brain/enzymology , Brain/pathology , Gaucher Disease/enzymology , Glucosylceramidase/metabolism , Neurons/enzymology , Neurons/pathology , Oryzias/metabolism , alpha-Synuclein/metabolism , Alkaline Phosphatase/metabolism , Animals , Autophagy , Gaucher Disease/pathology , Gene Deletion , Gene Knockout Techniques , Models, Biological , Mutation/genetics , Phenotype , Sphingolipids/metabolism
5.
Mov Disord ; 36(7): 1554-1564, 2021 07.
Article in English | MEDLINE | ID: mdl-33813737

ABSTRACT

BACKGROUND: The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE: The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS: Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS: Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION: Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Mice , Nitriles , Parkinson Disease/drug therapy , Pyridones/pharmacology , alpha-Synuclein/genetics
6.
J Neural Transm (Vienna) ; 128(1): 27-36, 2021 01.
Article in English | MEDLINE | ID: mdl-33136226

ABSTRACT

In the pharmacotherapy of patients with Parkinson's disease (PD), entacapone reduces the peripheral metabolism of L-dopa to 3-O-methyldopa (3-OMD), thereby prolonging the half-life (t1/2) of L-dopa and increasing the area under the concentration curve (AUC). The effect of entacapone on the pharmacokinetics of L-dopa differs between patients with high-activity (H/H) and low-activity (L/L) catechol-O-methyltransferase (COMT) Val158Met polymorphisms, but the effects are unclear in heterozygous (H/L) patients. 3-OMD has a detrimental effect and results in a poor response to L-dopa treatment in patients with PD; however, the influence of this polymorphism on the production of 3-OMD remains unknown. Therefore, the present study aimed to clarify the effect of the COMT Val158Met polymorphism on the concentrations of L-dopa and 3-OMD in the presence of entacapone. We performed an open-label, single-period, single-sequence crossover study at two sites in Japan. The study included 54 Japanese patients with PD, who underwent an acute L-dopa administration test with and without 100 mg entacapone on two different days. Entacapone increased L-dopa AUC0-infinity by 1.59 ± 0.26-fold in the H/H group, which was significantly higher than that in the H/L (1.41 ± 0.36-fold) and L/L (1.28 ± 0.21-fold) groups (p < 0.05). The concurrent administration of L-dopa with entacapone suppressed the increase in 3-OMD levels compared with L-dopa alone in all genotypes. Our results suggest that the COMT Val158Met polymorphism may be an informative biomarker for individualized dose adjustment of COMT inhibitors in the treatment of PD.


Subject(s)
Catechol O-Methyltransferase , Levodopa , Antiparkinson Agents , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase Inhibitors , Catechols , Cross-Over Studies , Humans , Nitriles , Tyrosine/analogs & derivatives
7.
FEBS Lett ; 587(9): 1316-25, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23499937

ABSTRACT

Kufor-Rakeb syndrome (KRS) was originally described as an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia. ATP13A2 was identified as the causative gene in KRS. ATP13A2 encodes the ATP13A2 protein, which is a lysosomal type5 P-type ATPase, and ATP13A2 mutations are linked to autosomal recessive familial parkinsonism. Here, we report that normal ATP13A2 localizes in the lysosome, whereas disease-associated variants remain in the endoplasmic reticulum. Cathepsin D activity was decreased in ATP13A2-knockdown cells that displayed lysosome-like bodies characterized by fingerprint-like structures. Furthermore, an atp13a2 mutation in medaka fish resulted in dopaminergic neuronal death, decreased cathepsin D activity, and fingerprint-like structures in the brain. Based on these results, lysosome abnormality is very likely to be the primary cause of KRS/PARK9.


Subject(s)
Cathepsin D/metabolism , Dopaminergic Neurons/cytology , Inclusion Bodies/metabolism , Proton-Translocating ATPases/deficiency , Proton-Translocating ATPases/genetics , Animals , Cell Line, Tumor , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/pathology , Endoplasmic Reticulum/metabolism , Gene Knockdown Techniques , Humans , Lysosomes/metabolism , Mutation , Oryzias/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...